Disilver Tetraiodide-Hexamethylethylenediamine

By M. M. Thackeray and J. Coetzer
National Physical Research Laboratory, CSIR, P.O. Box 395, Pretoria 0001, South Africa

(Received 7 April 1975; accepted 11 April 1975)

Abstract

Ag}_{2} \mathrm{I}_{4} \mathrm{C}_{8} \mathrm{H}_{22} \mathrm{~N}_{2}\), orthorhombic, Pnnm, $a=$ 14.19 (2), $b=9.72$ (1), $c=7 \cdot 13$ (1) $\AA, D_{c}=2.94 \mathrm{~g} \mathrm{~cm}^{-3}$, $Z=2, R=0.058$ for 908 reflexions. The Ag^{+}ions are situated at the centres of edge-sharing I^{-}tetrahedra. The tetrahedra are arranged in chains parallel to \mathbf{c}.

Introduction. Crystals of $\mathrm{Ag}_{2} \mathrm{I}_{4}\left[\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{N}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{N}-\right.$ $\left(\mathrm{CH}_{3}\right)_{3}$] were obtained as well faceted needles. A $0.06 \times$ $0.06 \times 0.11 \mathrm{~mm}$ crystal was selected for data collection. The intensities of 951 reflexions were measured in the range $3^{\circ} \leq \theta \leq 25^{\circ}$ on a Philips PW1100 diffractometer with graphite-monochromated Mo $K \alpha(\lambda=0.7107 \AA)$ radiation. The $\omega-2 \theta$ scan technique was employed, the scan width being $1.2^{\circ} \theta$ and scan speed $0.04^{\circ} \theta \mathrm{s}^{-1}$. 43 reflexions were considered to be unobserved according to the criterion $I(\mathrm{rel})<1 \cdot 65 \sigma(I)$, where $\sigma(I)=$ $\left[(0.02 S)^{2}+S+B\right]^{1 / 2}, \quad S=$ scan count and $B=$ background count. The intensities were corrected for Lorentz and polarization effects but not for absorption $\left(\mu=82.8 \mathrm{~cm}^{-1}\right)$. Systematic absences 0 kl for $k+l \neq 2 n$ and $h 0 l$ for $h+l \neq 2 n$ indicated space groups Pnn2 or Pnnm. The space group was assigned as

Pnnm following the final structural analysis. The I^{-} and Ag^{+}ion positions were obtained from a Patterson map. The non-hydrogen atoms were located from a difference map. After several cycles of isotropic and anisotropic refinement, R converged to $0 \cdot 058$. The shift/error values at this stage were $<0 \cdot 1$ for all parameters. Unit weights were applied. Scattering factors for $\mathrm{Ag}^{+}, \mathrm{I}^{-}, \mathrm{C}$ and N were those of Cromer \& Mann (1968). All computations were carried out with X-RAY 72 (Stewart, Kruger, Ammon, Dickinson \& Hall, 1972). Final atomic and thermal parameters are listed in Table 1. Bond lengths and angles are given in Table 2. The labelling scheme is shown in Fig. 1.*

Discussion. Numerous solid compounds (Geller \& Owens, 1972; Owens, 1970; Owens \& Argue, 1967) containing AgI have been reported, several of which

[^0]Table 1. Final positional $\left(\times 10^{4}\right)$ and thermal $\left(\times 10^{3}\right)$ parameters
Anisotropic temperature factors are of the form:

	Position	x	y	z	U_{11}	U_{22}	U_{23}	U_{12}	U_{13}	U_{23}
I(2)	$4(g)$	443 (2)	2305 (2)	0	101 (2)	36 (1)	30 (1)	-14(1)	0	0
I(2)	$4(g)$	1443 (1)	-592 (2)	0	43 (1)	40 (1)	44 (1)	0 (1)	0	0
Ag	4(e)	0	0	2326 (3)	71 (1)	50 (1)	46 (1)	-4 (1)	0	0
N	$4(g)$	1338 (15)	4750 (19)	5000 (0)	46 (12)	18 (10)	89 (18)	7 (9)	0	0
C(1)	$4(g)$	306 (16)	4346 (23)	5000 (0)	26 (11)	25 (12)	98 (22)	4 (10)	0	0
C(2)	4(h)	1597 (14)	5564 (18)	3264 (23)	72 (12)	50 (10)	27 (9)	2 (9)	19 (9)	6 (8)
C(3)	$4(g)$	1926 (24)	3415 (29)	5000 (0)	56 (20)	23 (14)	303 (70)	24 (14)	0	0

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

Symmetry code	a	b		d			
Rotation matrix	$\begin{array}{llll}-1 & 0 & 0\end{array}\left[\begin{array}{l}0 \\ 0\end{array}\right.$		0 [07			$0[0710$	$[0]$
with translation	0-1 0	0-1	0 0	0 -		$0 \quad 12] 01$	
vector in 12 ths	$0 \begin{array}{llll}0 & 0 & -1 & \\ 0\end{array}$		$-1[12]$			1 12] 00	[12]
(a) Iodide tetrahedron	(b) Amine chain						
$\mathrm{I}(1)-\mathrm{I}(1) a \quad 4 \cdot 655$ (5)	Ag- $\mathrm{I}(1) a$	$2 \cdot 857$ (3)	$\mathrm{N}-\mathrm{C}$ (1)	$1 \cdot 52$ (3)		$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(2)$	111.7 (12)
$\mathrm{I}(1)-\mathrm{I}(2) \quad 4 \cdot 759$ (4)	$\mathrm{Ag}-\mathrm{I}(2) b$	$2 \cdot 856$ (3)	$\mathrm{N}-\mathrm{C}$ (2)	$1 \cdot 51$ (2)		$\mathrm{C}(1)-\mathrm{N}-\ldots \mathrm{C}(2) d$	111.7 (12)
$\mathrm{I}(1)-\mathrm{I}(2) b \quad 4.759$ (5)	$\mathrm{I}(1)-\mathrm{Ag}-\mathrm{I}(1) a$	$109 \cdot 1$ (1)	$\mathrm{N}-\mathrm{C}(3)$	$1 \cdot 54$ (4)		$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(3)$	$107 \cdot 7$ (18)
$\mathrm{I}(2)-\mathrm{I}(1) a \quad 4 \cdot 759$ (5)	$\mathrm{I}(1)-\mathrm{Ag}-\mathrm{I}(2)$	$112 \cdot 8$ (1)	$\mathrm{C}(1)-\mathrm{C}(1) c$	$1 \cdot 54$ (3)		$\mathrm{C}(2)-\mathrm{N}-\mathrm{C}(2) d$	$109 \cdot 6$ (15)
$\mathrm{I}(2)-\mathrm{I}(2) b \quad 4 \cdot 254$ (6)	$\mathrm{I}(1)-\mathrm{Ag}-\mathrm{I}(2) b$	$112 \cdot 8$ (1)				$\mathrm{C}(2)-\mathrm{N}-\mathrm{C}(3)$	$108 \cdot 0$ (13)
$\mathrm{I}(1) a-\mathrm{I}(2) b \quad 4.759$ (4)	$\mathrm{I}(2)-\mathrm{Ag}-\mathrm{I}(1) a$	$112 \cdot 8$ (1)				$\mathrm{C}(2) d-\mathrm{N}-\mathrm{C}(3)$	$108 \cdot 0$ (13)
Ag-I(1) 2.857 (3)	$\mathrm{I}(2)-\mathrm{Ag}-\mathrm{I}(2) b$	$96 \cdot 3$ (1)				$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(1) c$	$109 \cdot 3$ (17)
Ag-II(2) 2.856 (3)	$\mathrm{I}(1) a-\mathrm{Ag}-\mathrm{I}(2) b$	$112 \cdot 8$ (1)					

have conductivities approaching those of liquid electrolytes. When AgI is reacted with hexamethylethylenediamine diiodide, several compounds are formed according to the reaction (Coetzer \& Thackeray, 1975)

$$
n \mathrm{AgI}+\mathrm{C}_{8} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{I}_{2} \rightarrow \mathrm{Ag}_{n} \mathrm{I}_{n+2} \mathrm{C}_{8} \mathrm{H}_{22} \mathrm{~N}_{2} .
$$

An investigation into the conductive properties and crystal structures of these compounds is in progress at this laboratory. Here we report the structure of the compound $\mathrm{Ag}_{2} \mathrm{I}_{4} \mathrm{C}_{8} \mathrm{H}_{22} \mathrm{~N}_{2}$ in which the AgI concentration is $67 \mathrm{~mol} \%$.
The structural features of the compound are illustrated in Fig. 1. The I^{-}ions form tetrahedra, each of which contains an Ag^{+}ion at its centre. The mean Ag-I distance within each tetrahedron is $2 \cdot 857$ (3) \AA. The tetrahedral bond angles are listed in Table 2.

Each I^{-}tetrahedron shares two of its edges to form chains parallel to \mathbf{c}. The Ag^{+}ions at the centres of the tetrahedra are separated by $3.81 \AA$.
The amine chain lies along a on a mirror plane at $z=\frac{1}{2}$. It is also situated about a symmetry centre at $\left(0, \frac{1}{2}, \frac{1}{2}\right)$. The bond lengths and angles within the amine chain are normal (Table 2).

References

Coetzer, J. \& Thackeray, M. M. (1975). Results to be published elsewhere.
Cromer, D. T. \& Mann, J. (1968). Acta Cryst. A24, 321324.

Fig. 1. [010] projection of the structure. The symmetry code for the atoms is given in Table 2.

Geller, S. \& Owens, B. B. (1972). J. Phys. Chem. Solids, 33, 1241-1250.
Owens, B. B. (1970). J. Electrochem. Soc. 117, 1536-1539.
Owens, B. B. \& Argue, G. R. (1967). Science, 157, 308-309.
Stewart, J. M., Kruger, G. J., Ammon, H., Dickinson, C. H. \& Hall, S. R. (1972). Univ. of Maryland Comput. Sci. Tech. Rep. TR-192.

2-(Nitromethylene)piperidine

By J.J.de Boer and D. Bright
Koninklijke/Shell Laboratorium Amsterdam (Shell Research B.V.), Badhuisweg 3, Amsterdam-Noord, The Netherlands

(Received 14 October 1974; accepted 29 March 1975)

Abstract. $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~N}_{2}$, M.W. 142.2, orthorhombic, Pbca, $a=6.963(1), b=10 \cdot 459(3), c=19 \cdot 717(7) \AA, Z=8$, $D_{x}=1.30 \mathrm{~g} \mathrm{~cm}^{-3}, \mu\left(\mathrm{Cu} \mathrm{K} \mathrm{\alpha)}=0.845 \mathrm{~mm}^{-1}\right.$. The paleyellow transparent crystals are elongated along [001]. The nitro group is cis to the ring N atom.

Introduction. Crystals were supplied by Dr C. Boyce. Preliminary precession photographs of two crystals in different orientations showed the extinction rules: 0 kl : $k=2 n, h 0 l: l=2 n, h k 0: h=2 n$, unambiguously defining the space group as $P b c a$. A crystal with approximate dimensions $0.20 \times 0.25 \times 0.18 \mathrm{~mm}$ was glued to a Lindemann glass capillary and mounted on a Nonius
automatic three-circle diffractometer equipped with scintillation counter and pulse-height discriminator. The c axis coincided with the φ axis of the diffractometer. Cell dimensions were obtained from a leastsquares fit on $\theta,-\theta$ values of 13 reflexions with $\theta \leq 15^{\circ}$, measured with $\mathrm{Cu} K \alpha$ radiation ($\lambda=1 \cdot 54182 \AA$). In the range $0 \leq \sin \theta / \lambda \leq 0.497 \AA^{-1}$, 564 unique reflexions, out of a possible 905 , were observed using Ni-filtered $\mathrm{Cu} K \alpha$ radiation and a $\theta, 2 \theta$ scan. Attenuation filters were automatically inserted if the intensity of a reflexion exceeded 2000 c.p.s. A reflexion was considered to be observed when $\frac{1}{2} I>\sigma(I)=\left[C+B_{1}+B_{2}+\right.$ $\left.(0.05 I)^{2}\right]^{1 / 2}$, in which $\sigma(I)$ is the standard deviation of

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31047 (7 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CHI 1 NZ, England.

